Universität Augsburg

10. Übung zur Analysis I

Prof. Dr. Marc Nieper-Wißkirchen Dr. Ingo Blechschmidt

21. Dezember 2021*

- 57. m. Sei $B(\mathbf{R})$ die Menge aller beschränkten Funktionen auf \mathbf{R} versehen mit der Supremumsnorm (vergleiche Aufgabe 31). Bekanntlich (Beispiel (d) aus 4.8) ist der Einheitsball $B_1(0)$ eine abgeschlossene Teilmenge von $B(\mathbf{R})$. Ist $B_1(0)$ folgenkompakt?
- 58. s. Beweise: Die Funktion $\sqrt{}$: $[0, \infty[\to \mathbf{R} \text{ ist gleichmäßig stetig, genügt aber nicht einer Lipschitzbedingung (vergleiche Aufgabe 39 (a)); hingegen ist die Funktion <math>x^2$ stetig, aber nicht gleichmäßig stetig.

Fazit. Somit ist die Implikationskette

f genügt einer Lipschitzbedingung

 $\implies f$ ist gleichmäßig stetig $\implies f$ ist stetig

im allgemeinen nicht umkehrbar.

59. s. Bestimme alle Häufungspunkte der komplexen Zahlenfolge $(a_n)_{n\geq 0}$ mit

$$a_n := i^n + 1/2^n$$
.

(Dabei darfst Du $C = \mathbb{R}^2$ mit der Metrik des Produktraumes betrachten.)

60. Cesaro-Konvergenz reeller Zahlenfolgen Sei $(a_n)_{n\geq 1}$ eine reelle Zahlenfolge und sei $(c_n)_{n\geq 1}$ die Folge der arithmetischen Mittel $c_n:=(\sum_{i=1}^n a_i)/n$. Wir nennen — nach E. Cesaro (1859–1906) — eine Folge $(a_n)_{n\geq 1}$ C-konvergent, wenn die Folge $(c_n)_{n>1}$ konvergiert. Ist im Falle der Konvergenz c der Limes

 $^{^*\}mathrm{Die}$ bearbeiteten Übungsblätter sind bis zur Übung am 11. Januar 2022 zu bearbeiten.

der Folge $(c_n)_{n\geq 1}$, so nennen wir c den Cesaro-Limes von $(a_n)_{n\geq 1}$ und schreiben C- $\lim_{n\to\infty} a_n = c$.

- (a) s. Der Permanenzsatz. Beweise: Konvergiert $(a_n)_{n\geq 1}$ gegen ein $a\in \mathbf{R}$, so ist $(a_n)_{n\geq 1}$ auch C-konvergent, und es gilt C- $\lim_{n\to\infty} a_n=a$.
- (b) m. Monotonie des Cesaro-Limes. Beweise: Sind $(a_n)_{n\geq 1}$ und $(b_n)_{n\geq 1}$ C-konvergente reelle Zahlenfolgen und gilt $a_n\leq b_n$ für alle $n\geq 1$, so ist auch C- $\lim_{n\to\infty} a_n\leq \operatorname{C-lim}_{n\to\infty} b_n$.
- (c) m. Linearität des Cesaro-Limes. Beweise: Sind $(a_n)_{n\geq 1}$ und $(b_n)_{n\geq 1}$ C-konvergente reelle Zahlenfolgen und $a, b \in \mathbf{R}$ mit C- $\lim_{n\to\infty} a_n = a$ und C- $\lim_{n\to\infty} b_n = b$, so gilt:
 - (i) $(a_n + b_n)_{n \ge 1}$ ist C-konvergent, und es gilt $C-\lim_{n \to \infty} (a_n + b_n) = a + b$,
 - (ii) Ist $\alpha \in \mathbf{R}$, so ist $(\alpha \cdot a_n)_{n \geq 1}$ C-konvergent, es gilt $\underset{n \to \infty}{\operatorname{C-lim}}(\alpha \cdot a_n) = \alpha \cdot a$.
- (d) s. Invarianz des Cesaro-Limes unter affinen Transformationen. Beweise: Ist $(a_n)_{n\geq 1}$ eine C-konvergente reelle Zahlenfolge, ist $a\in \mathbf{R}$ mit C-lim $a_n=a$ und sind $\alpha, \beta\in \mathbf{R}$, so ist $(\alpha\cdot a_n+\beta)_{n\geq 1}$ C-konvergent, und es gilt C-lim $(\alpha\cdot a_n+\beta)=\alpha\cdot a+\beta$.
- (e) m. Zeige: Ist $(a_n)_{n\geq 1}$ eine C-konvergente reelle Zahlenfolge, so gilt

$$\liminf_{n \to \infty} a_n \le \operatorname{C-lim}_{n \to \infty} a_n \le \limsup_{n \to \infty} a_n.$$

- (f) m. Gib eine C-konvergente reelle Zahlenfolge an, die nicht (im üblichen Sinne) konvergent ist.
- (g) m. Gib eine beschränkte reelle Zahlenfolge an, die nicht C-konvergent ist.
- **61.** Untersuche folgende reelle Zahlenfolgen $(a_n)_{n\geq 1}$ auf Konvergenz und berechne gegebenenfalls ihren Grenzwert:

(a) m.
$$a_n = \frac{1}{n} \sum_{k=1}^n \frac{1}{k}$$
.

(b) s.
$$a_n = \frac{1}{\sqrt{n}} \sum_{k=1}^n \frac{1}{\sqrt{k}}$$
.

(Tip: Zeige zunächst $1/\sqrt{k+1} \leq 2(\sqrt{k+1}-\sqrt{k}) \leq 1/\sqrt{k}$.)

(c) m. $a_n = \frac{P(n)}{Q(n)}$, wobei P/Q eine rationale Funktion sei (vergleiche Aufgabe 13).

62. m.

- (a) Seien E ein metrischer Raum und $f: E \to E$ eine stetige Abbildung. Zeige: Wenn eine f-Banachfolge gegen einen Punkt $p \in E$ konvergiert, so ist p ein Fixpunkt von f, d. h. f(p) = p.
- (b) Im HERON*schen Verfahren* zur Bestimmung von \sqrt{a} für $a \in \mathbf{R}_+$ werden Banachfolgen bezüglich der Funktion $f = (x + a/x)/2|\mathbf{R}_+$ benutzt. Zeige, daß jede f-Banachfolge konvergiert, und zwar gegen \sqrt{a} .
- (c) Versuche mittels eines Rechners unter Benutzung des ersten Aufgabenteils Fixpunkte für die Funktionen

$$\cos$$
, $\exp(-x)$, und $\sqrt{}$

zu ermitteln und jeweils das Einzugsgebiet der Fixpunkte zu bestimmen, d. h. die Menge derjenigen Zahlen a_0 , für welche die Banachfolge $(a_n)_{n\geq 0}$ bezüglich der jeweiligen Funktion gerade gegen den Fixpunkt konvergiert. (Die Kosinus-Funktion betrachte dabei als Funktion des Bogenmaßes.) Prüfe Deine experimentellen Ergebnisse an den Graphen der verschiedenen Funktionen.

- **63. m. Der Cantorsche Durchschnittssatz.** Es seien (E, d) ein vollständiger metrischer Raum und $(A_n)_{n\geq m}$ eine Folge nicht-leerer abgeschlossener Teilmengen von E, für welche gelte:
 - (a) $\forall n \geq m : A_{n+1} \subseteq A_n \text{ und}$
 - (b) die Folge $(\operatorname{diam}(A_n))_{n>m}$ der *Durchmesser*

$$\operatorname{diam}(A_n) := \sup\{d(p,q) \mid p, q \in A_n\}$$

ist eine Nullfolge.

Zeige: Der Durchschnitt $\bigcap_{n\geq m} A_n$ enthält genau einen Punkt, und zwar gilt: Jede Folge $(p_n)_{n\geq m}$ von Punkten $p_n\in A_n$ konvergiert gegen diesen einzigen Punkt $p^*\in \bigcap_{n\geq m} A_n$.

- **64. Intervallschachtelungsprinzip.** Als Spezialfall von Aufgabe 63. ergibt sich das Prinzip der Intervallschachtelung: Es sei $(I_n)_{n\geq 0}$ eine Folge von Intervallen $I_n=[a_n,b_n]$ mit den Eigenschaften:
 - (a) $\forall n \geq 0 : I_{n+1} \subseteq I_n$.
 - (b) Die Folge $(b_n a_n)_{n \ge 0}$ der Intervallängen ist eine Nullfolge.

Dann besteht der Durchschnitt $\bigcap_{n=0}^{\infty} I_n$ aus genau einem Element.

(a) m. Nullstellenbestimmung mittels Intervallhalbierungsverfahren. Seien $a, b \in \mathbf{R}$ und $f : [a, b] \to \mathbf{R}$ eine stetige Funktion, für die

$$f(a) \cdot f(b) \le 0 \tag{1}$$

gilt. Damit (?) besitzt f mindestens eine Nullstelle in [a,b], und eine solche wollen wir approximativ berechnen. Dazu setzen wir $I_0 := [a,b]$ und $c_0 := \frac{1}{2}(a+b)$. Dann (?) besitzt mindestens eines der beiden Intervalle $[a,c_0]$ oder $[c_0,b]$ die (1) entsprechende Eigenschaft. Wir bezeichnen dieses Intervall mit I_1 und fahren damit fort. Iterieren wir dieses Verfahren, so erhalten wir eine Folge $(I_n)_{n\geq 0}$ von Intervallen $I_n = [a_n,b_n]$ und eine reelle Zahlenfolge $(c_n)_{n\geq 0}$, wobei wir $c_n := \frac{1}{2}(a_n + b_n)$ definieren.

- (i) Zeige: Die Folge $(c_n)_{n\geq 0}$ konvergiert gegen ein $c\in [a,b]$, und es gilt f(c)=0.
- (ii) Wie viele Iterationsschritte müssen höchstens durchgeführt werden, um c bis auf eine vorgegebene Genauigkeit ε zu berechnen?
- (b) s. Schreibe ein (Scheme-)Programm zur Bestimmmung einer Nullstelle einer stetigen Funktion f in einem Intervall [a, b], für das (1) gilt, nach dem Intervallhalbierungsverfahren.
- (c) s. Bestimme mit Deinem Programm alle Nullstellen von

$$f(x) = x^3 + \frac{11}{2}x^2 - 8x - 44$$

bis auf eine Genauigkeit $\varepsilon_2 := 0,1$, wobei für den Wert an jeder approximativen Nullstelle c gelten soll: $|f(c)| < \varepsilon_1 := 0,1$.

Wir wünschen allen Studentinnen und Studenten ein geruhsames und besinnliches Weihnachtsfest, sowie ein gesundes und erfolgreiches 2022.