8. Übung zur Analysis II

Prof. Dr. Marc Nieper-Wißkirchen Lukas Stoll, M. Sc.

17. Juni 2022*

- **152. m.** Bestimme die Taylorreihe von cos in $t_0 \in \mathbf{R}$, und leite daraus das Additionstheorem für cos her.
- 153. s. Strecken sind Kürzeste. Für jede Kurve $\alpha \colon [a,b] \to E$ gilt

$$L(\alpha) \ge \|\alpha(b) - \alpha(a)\| = d(\alpha(a), \alpha(b)).$$

Daher (?) ist die Strecke zwischen $\alpha(a)$ und $\alpha(b)$ eine kürzeste Kurve zwischen den beiden Punkten.

(Tip: Nach dem funktionalanalytischen Satz von Hahn-Banach existiert eine stetige Linearform $\lambda \colon E \to \mathbf{R}$ mit

$$\lambda(\alpha(b) - \alpha(a)) = \|\alpha(b) - \alpha(a)\|$$
 und $\forall v \in E \colon |\lambda(v)| \le \|v\|$.

Damit (?) folgt, daß

$$\|\alpha(b) - \alpha(a)\| = \int_a^b (\lambda \circ \alpha)' dx \le L(\alpha).$$

Beweise zusätzlich die Existenz der Linearform λ in dem speziellen Fall $E = \mathbb{R}^n$ und $\|\cdot\| = \|\cdot\|_2$, ohne den Satz von Hahn-Banach zu bemühen.)

154. m. Invarianz der Weglänge gegenüber Parametertransformationen. Sei $\alpha \colon [a,b] \to E$ ein Weg und $\varphi \colon [c,d] \to [a,b]$ eine stetige Parametertransformation, das ist eine stetige, monoton wachsende Funktion φ mit $\varphi(c) = a$ und $\varphi(d) = b$. Dann ist $L(\alpha) = L(\alpha \circ \varphi)$; insbesondere gilt, daß α genau dann rektifizierbar ist, wenn $\alpha \circ \varphi$ rektifizierbar ist.

^{*}Die Übungsblätter sind bis zur Übung am 24. Juni 2022 zu bearbeiten.

155. m. Sei $f: I \to \mathbf{R}$ zweimal stetig differenzierbar und $\alpha := (x, f): I \to \mathbf{R}^2$ die kanonische Parametrisierung des Graphen von f. Zeige, daß

$$T_{\alpha} = e^{i\theta}$$
 mit $\theta = \arctan \circ f'$

ist und daß die Krümmung von α durch

$$\kappa = f''/\sqrt{1 + (f')^2}^3$$

berechnet wird. Bestätige in diesem Fall, daß die Definition von Wendepunkten in Abschnitt 9.7 mit der Definition in Abschnitt 9.4 übereinstimmt.

156. Seien $a,b \in I$ mit a < b und $\alpha \colon I \to E$ eine Kurve in einen Banachraum E. Mit s bezeichnen wir die Bogenlängenfunktion von α und mit ds das Differential der Bogenlänge.

Sei $f \colon [a,b] \to F$ eine Funktion in einen weiteren Banachraum F. Zeige:

(a) m. Ist f eine Treppenfunktion mit angepaßter Zerlegung $(t_k)_{k=0,\dots,n}$ von [a,b] (vgl. Abschnitt 8.2), so ist

$$\int_{a}^{b} f \, ds = \sum_{k=1}^{n} f(\xi_k) \cdot L(\alpha|[t_{k-1}, t_k]) = \sum_{k=1}^{n} f(\xi_k) \cdot (s(t_k) - s(t_{k-1}))$$

mit beliebigen $\xi_k \in]t_{k-1}, t_k[.$

(b) s. Approximation von $\int_a^b f \, ds$ durch verallgemeinerte Riemannsche Summen. Ist f eine stetige Funktion, so existiert zu jedem $\varepsilon \in \mathbf{R}_+$ ein $\delta \in \mathbf{R}_+$, so daß für jede Zerlegung $(t_k)_{k=0,\dots,n}$ von [a,b] mit $t_k-t_{k-1} \leq \delta$ und jede Folge $(\xi_k)_{k=1,\dots,n}$ von "Zwischenpunkten" mit $\xi_k \in]t_{k-1},t_k[$ gilt, daß

$$\left\| \int_a^b f(t) \, ds - \sum_{k=1}^n f(\xi_k) \cdot (s(t_k) - s(t_{k-1})) \right\| < \varepsilon.$$

157. (a) s. Seien $\gamma = (\gamma_1, \gamma_2) \colon I \to \mathbf{R}^2$ eine Kurve mit $\gamma(I) \subseteq \mathbf{S}^1$, $a \in I$, und $\theta_0 \in \mathbf{R}$, so daß $\gamma(a) = e^{i\theta_0}$, etwa $\theta_0 = \arg(\gamma(a))$, vgl. Abschnitt 7.19. Dann gilt $\gamma = e^{i\theta}$ mit der stetig differenzierbaren Funktion

$$\theta := \theta_0 + \int_a^x (\gamma_1 \gamma_2' - \gamma_2 \gamma_1') \, dx.$$

(Tip: Mit dem kanonischen Skalarprodukt des ${\bf R}^2$ berechne die Ableitung $\langle \gamma, e^{i\theta} \rangle'$ und wende an geeigneter Stelle die Cauchy–Schwarzsche Ungleichung an.)

(b) m. Zeige, daß jede Kurve $\alpha \colon I \to \mathbf{C}$ mit $0 \notin \alpha(I)$ eine Polarkoordinatendarstellung besitzt; vgl. Beispiel (c) aus Abschnitt 9.6.

158. m. Berechne die Absolutkrümmung der Archimedischen Spirale

$$\alpha \colon [0, \infty[\to \mathbf{C}, t \mapsto t \cdot e^{it}]$$
.

- **159.** (a) Skizziere die folgenden Kurven und untersuche sie auf Differenzierbarkeit und Regularität:
 - (i) m. Neilsche Parabel: $\alpha \colon \mathbf{R} \to \mathbf{R}^2, t \mapsto (t^2, t^3),$
 - (ii) s. *Kardioide*: $\beta \colon \mathbf{R} \to \mathbf{C}, t \mapsto (1 + \cos(t)) \cdot e^{it}$.
 - (b) m. Seien $a, b \in \mathbf{R}$ mit a < b. Bestimme die Länge des Bogens der Parabel $y = x^2$ zwischen (a, a^2) und (b, b^2) .
 - (c) s. Eine Kreisscheibe vom Radius r in \mathbf{R}^2 rolle gleichförmig die x-Achse entlang. Die durch einen Punkt p auf dem Rand der Kreisscheibe beschriebene Kurve $\alpha \colon \mathbf{R} \to \mathbf{R}^2$ heißt Zykloide.
 - (i) Berechne α für den Fall $\alpha(0) = (0,0)$.
 - (ii) Berechne die Bogenlänge der Zykloide, die einer vollständigen Rotation der Kreisscheibe entspricht.